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1. INTRODUCTION 

Dynamic torque applications exist in many fields of industry; 
two examples are engine test stands and power torque tools. 
Efficiency measurements of combustion engines and electric 
drives are carried out by means of rotational speed and dynamic 
torque measurements in engine test stands. The torque output 
of these drives may be significantly dynamic with a frequency 
content up to the kilohertz range.  

From experience with force transducers – which have a 
related mechanical design, measurement principle and 
installation situation – it is known that transducers may have a 
dynamic behaviour which can influence the measuring results.  

At present, static torque calibrations can be carried out in a 
wide range and with high precision, but there are no facilities 
and standards to determine the dynamic behaviour of torque 
transducers. For this reason, a method for primary dynamic 
torque calibration was developed and a proof-of-principle 
measuring device was designed and manufactured at PTB. 

2. MEASURING DEVICE 

The dynamic torque measuring device enables dynamic 
torque excitations in a frequency range of up to 1 kHz with up 
to 20 N·m sinusoidal torque.  

The measurement principle is in analogy to the periodic 
force excitation based on Newton's second law [1]. With the 
mass moment of inertia J and the time-varying angular 
acceleration ( )t , the torque ( )M t  is given by 

 

     .M t t J   (1)

 
Figure 1 shows the components of the calibration device 

and the corresponding mechanical spring-mass-damper model. 
The transducer under test (DUT) is mounted via two coupling 
elements to a rotational exciter. The coupling elements are 
composed of an upper and a lower half connected by a steel 
diaphragm to reduce parasitic bending moments acting on the 
transducer. At the same time, this mechanical design offers a 
high torsional stiffness. Interchangeable collets enable the 
mounting of transducers with shaft ends of various diameters in 
the measuring device. At the top of the set-up, the transducer 
under test carries a known mass moment of inertia (MMOI) J, 
which is composed of components for an angular acceleration 
measurement set-up and a radial air bearing. The air bearing 
reduces the axial load as well as bending moments acting on the 
transducer under test in conjunction with low friction 
operation.  
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The primary measurement of the angular acceleration is 
carried out by means of a radial grating disk and a laser-
Doppler interferometer [1]. 

3. MODEL 

The measurement principle of the vast majority of torque 
transducers is based on strain gauges. This principle is used for 
force transducers as well, so the implementation of a model for 
torque transducers was realised based on the experience with 
force transducers [2]. Strain gauge transducers have a structural 
design, in which the sensing elements are applied on a structural 
part of high compliance. This part can be described as a 
torsional spring ( Tc ) for torque transducers. The remaining 
structural parts of the transducer can be assumed to be rigid 
and will be allocated to the mass moment of inertia element 
above ( HJ ) or below ( BJ ) the torsional spring, respectively. In 
parallel to the torsional spring, the model assumes a damping 
element. The behaviour of this system is supposed to be linear 
and time invariant (LTI). 

The distribution of the head and base MMOI of the 
transducer under test ( HJ  and BJ ) depends on the mechanical 
design of the transducer. 

Because of the fact that torque transducers are always 
coupled to the mechanical environment at both ends, different 
coupled elements of different MMOI, stiffness and damping 
may have influence on the frequency response of the system, 
which affects the frequency-dependent output signal of the 
transducer. To be able to identify the model parameters of the 
transducer, it is necessary to include the entire measurement 
set-up in the model. Again, a linear and time invariant approach 
is applied.  

As the coupling elements cannot be assumed to be totally 
rigid to torsional loads, they are represented in the model of the 
measuring device by two torsional spring and damper elements 
( M M E E,   ;  ,   )c d c d  coupled to mass moments of inertia at each 
end. The MMOI values of the rigid connections of the 

couplings and the transducer are split and accordingly allocated 
to the transducer and to the measuring device (e.g. JE2 and JB in 
Figure 1) in order to derive the model parameters of the 
transducer.  

 The mass moment of inertia JM2 includes all components of 
the measuring device on top of the upper half of the coupling. 
JM1 includes the lower part of the coupling, as well as adapters 
for the mounting of the transducer; the same applies to JE2 but 
in the opposite direction. 

Only if the model parameters of the measuring device are 
known, the determination of the transducer's model parameters 
from measurement data will be possible. Thus, measurement 
techniques for the determination of these parameters have to be 
developed. 

4. MASS MOMENT OF INERTIA 

The mass moment of inertia that generates the dynamic 
torque acting on the transducer, when applied to an angular 
acceleration, needs to be determined with high precision. 

For this purpose, a dedicated measuring device for the mass 
moment of inertia has been developed (see Figures 2, 3). Its 
measurement method is based on the principle of a physical 
pendulum. For small angles of pendulum excitation, the non-
linearity of the pendulum can be neglected – though this effect 
has to be taken into account for the measurement uncertainty 
evaluation. The frequency  of the pendulum's swing depends 
on its mass moment of inertia J and the restoring torque given 
by the mass of the pendulum m, the distance of the centre of 
mass from the axis of rotation l and the gravitational 
acceleration g. 

 

2

m g l
J


 

 . (2)

 
To minimize frictional losses, the pendulum set-up uses an 

air bearing [3]. The DUT is mounted on the axis of rotation. 
The mass moment of inertia of the DUT is derived from the 
change of the pendulum's swing frequency. For the 
measurement of the angular excitation, an optical angle encoder 
is used. Its grating disk has an angular pitch of 0.04°. This 

 
Figure 2. Pendulum for the measurement of the mass moment of inertia. Figure 1. Measuring device and its model. 
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angular resolution can be additionally increased by interpolation 
methods. 

The measured total mass moment of inertia total  J is 

composed of the MMOI of the pendulum pendJ  and the 

MMOI of all mounted components, e.g. of the device under 
test DUT  J  and of the added mass bodies iJ  of each test 
configuration i. 

 

total DUT pend 0     .i iJ J J J J J       (3)

 
As the pendulum's mass moment of inertia pendJ  is 

unknown, it has to be determined first. This is to be carried out 
in the same procedure as used subsequently for the mounted 
device under test. The unknown property can be identified by 
adding known mass moments of inertia to the pendulum. This 
is measured by mounting auxiliary mass bodies at different 
distances from the axis of rotation into the pendulum lever. 

The mass bodies of the pendulum have well-known 
dimensions and weights. With this information, the mass 
moment of inertia for rotation around the centre of gravity of 
each mass body can be calculated. The distance of the 
mounting position of the masses to the rotational axis of the 
pendulum was measured in advance. The acting mass moment 
of inertia iJ  of each mass body at a certain mounting position 
is given by the Huygens-Steiner theorem. 

Mounted mass bodies do not only influence the total mass 
moment of inertia of the pendulum, but also its total mass and 
its centre of gravity, i.e. the restoring torque ( )m g l   on the 
right-hand side of Equation (2) is influenced. Each test 
configuration is described by 

 

 0 0
0 2

  ( )
     .

i i
i

i

m l g m l g
J J



    
    (4)

 
To determine the swing frequency of the pendulum in a 

given test configuration, the angle encoder output is sampled 
with a sufficiently high sampling rate for a similar range of 
pendulum excitation angles. After the predetermination of 
frequency , magnitude C, phase  and decay-rate , a four 
parameter Levenberg-Marquardt fit is calculated on a damped 
sine function  

 

   sin     ,ty t C e t        (5)

 
where the predetermined values are used as initial parameters. 
Experience gathered after the first measurements shows a 
stable behaviour of the fit and a very good agreement of 
measured data and fit. 

The unknown mass moment of inertia J0 can be derived by 
varying the configuration of the pendulum by means of 
mounting different auxiliary mass bodies. Several measurements 
are necessary to vary the two parameters mass moment of inertia 
and restoring torque sufficiently for the identification process. 

This leads to a solvable bivariate regression problem in the 
form of 

 

 , .y f X p   (6)

 
The vector of observed values y consists of all of the 

measured angular frequency values i of the corresponding 
configuration i; the added auxiliary mass bodies contribute to 

the matrix of independent values X, which consist of iJ  and 

( )i im l g  . The vector of approximated parameters p 

consists of the unknown mass moment of inertia of the 
pendulum J0 and the unknown restoring torque 0 0( )m l g  .  

 

 T
1 2,  ,  ,  n   y ,  (7a)
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(7b)

 
T

0 0 0[ , ( )]J m l g  p .  (7c)

 
For the successful identification of the unknown parameters 

it is beneficial to maximize the variation of the independent 
values. This can be achieved by choosing mass bodies and 
mounting positions in an optimized way. Figure 4 shows the 
influence of different mass body configurations on the squared 

pendulum swing time 2 2 24π /  T   at the z-axis, and on the 

restoring torque  i im l g   and the added mass moments 

of inertia iJ  at the x- and y-axis, respectively. 

Figure 3. Measurement set-up for the determination of the mass moment
of inertia, shown with three mounted mass bodies and mounted DUT. 
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According to Equation 2, the pendulum is modelled 
assuming undamped oscillations. Therefore, this simplification 
can be applied only for systems of low damping. To estimate 
the effect of the damping, the decay of the pendulum's 
amplitude was measured (see Figure 5).  

Differing from the previous description, the oscillations of 
the pendulum were measured by means of a laser-Doppler 
interferometer, as the angle measurement set-up had not yet 
been installed. The interferometer traced the pendulum's swing 
at the bottom end of the pendulum.  

The damping of the pendulum was determined by 
calculating a non-linear regression approximating the 
measurement values with a damped sine fit function (see 
Equation (5)). The decay of the pendulum swing amplitude for 
the measurement data shown in Figure 5 was calculated and 

equals 3 12.23 10  s    . The damping slightly influences the 
resonant frequency of the pendulum [4]; the relationship 
between the damped natural frequency d and the undamped 
frequency ud is given by 

 

 2 2
ud d     .     (8)

 
For the measurement shown in Figure 5, the relative 

deviation due to this effect is in the range of 8  8 10 . 

5. TORSIONAL STIFFNESS 

The stiffness of the components of the measuring device has 
great influence on the torque measurement as it affects the 
dynamic behaviour of the whole system. The torsional stiffness 
c is defined as the torque-to-torsion ratio (with torque M and 
the torsional angle 2 1Δ      ) 

 

 .
Δ

M
c


  (9)

 
The determination of the torsional stiffness is realised by a 

measurement set-up (see Figure 6) in which a well-known 
torque is applied to the DUT while the angle of torsion is 
measured with high precision by means of two autocollimators.  

Two mirrors attached with support clamps to both sides of 
the DUT provide the sensing surface of the autocollimators. 
The torque-dependent difference of the two angle readings of 
both autocollimators yields the torsional angle. Mirrors with a 
planarity of 1/10   enable the determination of the angle with 
uncertainties of less than one arcsecond; the measurement 
range amounts to rotational angles of up to ± 600 arcseconds. 
In this measurement set-up, the statically applied torque is 
measured by means of a reference torque transducer. 

To measure the torsional stiffness, PTB's 20 N·m Torque 
Calibration Machine was equipped with two electronic 

 

Figure 6. Torsional stiffness measurement set-up. 

Figure 5. Decay of the pendulum's swing amplitude. 

Figure 4. Measurement values for different auxiliary mass bodies mounted
at different positions in the pendulum (red, green and magenta dots) and
result of the bivariate regression (blue, dotted surface). 

Figure 7. Measurement set-up for torsional stiffness with indicated sensing 
beams of autocollimators (red). 
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autocollimators in order to perform measurements of the 
torsional angle. Figure 7 shows a photograph of the set-up. The 
20 N·m Torque Calibration Machine is seen in the centre, on 
the right is the autocollimator tracing the bottom mirror, on the 
left, the autocollimator sensing at the top mirror. 

A measurement routine was developed for the evaluation of 
the torsional stiffness. The applied load steps are based on the 
DIN 51309 standard for torque transducer calibrations. After 
preloading to avoid hysteresis behaviour in the torque 
calibration system, the applied torque (load) increases in steps 
of 10% to the full load. The number of load steps shown in 
Figure 8 was increased in comparison to the standard. For the 
measurement, both a clockwise and a counter-clockwise 
torsional loading cycle were applied. 

The voltage output of the bridge amplifier connected to the 
reference torque transducer and the angle values of the two 
autocollimators were acquired simultaneously. Several hundred 
measurement values were recorded for each torque step. 

The first measurement results are very encouraging, as seen 
in Figure 9. The torsional angle values for the different torque 
steps show a linear dependency. The first order regression line 
excellently fits the mean values of the different torque levels. 
The value for torsional stiffness is given by the gradient of the 
regression line. The angle offset is given by the initial absolute 
angle values of the autocollimators. 

6. CONCLUSIONS 

This paper describes the modelling and the methods for the 
determination of the model parameters of the dynamic torque 
calibration device at PTB. This modelling of the measuring 
device is a prerequisite to be able to determine the transducer's 
dynamic properties. 

The described methods and auxiliary measuring set-ups 
enable the measurement of the torsional stiffness and the mass 
moment of inertia. The torsional stiffness is determined by 
applying a well-known torque and by measuring the torsional 
angle on both sides of the DUT. The mass moment of inertia is 
determined by means of the swing frequency of a compound 
pendulum.  

As the commissioning of the described measuring set-ups is 
already completed, it is now intended to subsequently 
determine the model parameters of the components of the 
dynamic torque calibration device with these measurement 
methods.  

For the future model-based calibration of torque 
transducers, the parameters of the measuring device need to be 
known in order to identify the model parameters of the torque 
transducer under test from measurement data. 
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Figure 9. Measurement result with standard deviation (blue) and regression 
line (red). 

Figure 8. Load steps of the torsional stiffness measurement routine. 


